skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Davidson, Guy"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. People are remarkably capable of generating their own goals, beginning with child’s play and continuing into adulthood. Despite considerable empirical and computational work on goals and goal-oriented behaviour, models are still far from capturing the richness of everyday human goals. Here we bridge this gap by collecting a dataset of human-generated playful goals (in the form of scorable, single-player games), modelling them as reward-producing programs and generating novel human-like goals through program synthesis. Reward-producing programs capture the rich semantics of goals through symbolic operations that compose, add temporal constraints and allow program execution on behavioural traces to evaluate progress. To build a generative model of goals, we learn a fitness function over the infinite set of possible goal programs and sample novel goals with a quality-diversity algorithm. Human evaluators found that model-generated goals, when sampled from partitions of program space occupied by human examples, were indistinguishable from human-created games. We also discovered that our model’s internal fitness scores predict games that are evaluated as more fun to play and more human-like. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  2. Spatial relations, such as above, below, between, and containment, are important mediators in children’s understanding of the world (Piaget, 1954). The development of these relational categories in infancy has been extensively studied (Quinn, 2003) yet little is known about their computational underpinnings. Using developmental tests, we examine the extent to which deep neural networks, pretrained on a standard vision benchmark or egocentric video captured from one baby’s perspective, form categorical representations for visual stimuli depicting relations. Notably, the networks did not receive any explicit training on relations. We then analyze whether these networks recover similar patterns to ones identified in development, such as reproducing the relative difficulty of categorizing different spatial relations and different stimulus abstractions. We find that the networks we evaluate tend to recover many of the patterns observed with the simpler relations of “above versus below” or “between versus outside”, but struggle to match developmental findings related to “containment”. We identify factors in the choice of model architecture, pretraining data, and experimental design that contribute to the extent the networks match developmental patterns, and highlight experimental predictions made by our modeling results. Our results open the door to modeling infants’ earliest categorization abilities with modern machine learning tools and demonstrate the utility and productivity of this approach. 
    more » « less